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Recently, in the study of the effect of an explosion in solids the impulse mode for prob- 
lems of hydrodynamics (see, for example, [i]) has been applied with the assumption that during 
the explosion action the medium behaves as an ideal incompressible fluid. 

There exist several models for the effect of an explosion in which use is made of the 
impulse mode. One of these is a model for explosive cratering in soils [2]; in it the assump- 
tion is made that during the explosion all of the soil is in motion, while the crater bound- 
ary at the free surface is determined by equating its speed to a certain quantity v0, referred 
to as the critical speed. Within the framework of this model, Vlasov considered a number 
of problems dealing with explosive cratering in soils and the penetration of a target. Lav- 
rent'ev [3] made the assumption that the medium undergoing explosive loading is not in motion 
everywhere but only where the speed of the particles is larger than v 0 . Where the particle 
speed is less than v0, the medium is assumed to behave as a solid; the boundary separating 
these two regimes is the flow curve on which v = v 0. Such a model makes it possible to deter- 
mine not only the width of the crater, but even its whole boundary. The quantity v 0 charac- 
terizes the strength properties of the medium. The matter of how to determine v0 was con- 
sidered in [4, 5]. Vlasov's model has come to be known as the fluid model (FM) and that of 
Lavrent'ev as the solid-fluid model (SFM). 

In [6],, within the SFM framework, a planar problem was considered and solved; this prob- 
lem dealt with the penetration of a thin target by means of a surface line charge (LC) of 
constant thickness. Later on, other interesting problems relating to the penetration of a 
target (see~ for example, [7-9]) were solved. However, up to this point, in connection with 
penetration problems, no comparisons have been made of the results obtained with the FM and 
SFM models with the experimental data. This is done in the present paper. 

i. Description of the Experiments. As the explosive charge we used the detonating cord 
DC-A of radius 2.5"10 -2 m, buried in the target to a depth of one diameter. The targets 
used were prepared from soil, from an alabaster'sand mixture, from foamy concrete, and from 
a plastic compound. The soil targets were made in the following way: two holes were dug 
(each in the form of a rectangular parallelepiped) close to one another, so that there re- 
mained connecting bridges between them varying in thickness from 0.05 m to 0.15 m; these lat- 
ter served as the targets. Prior to the explosion the soil density was 2.21.103 kg/m 3 and 
it had an 18.6% moisture content. The targets of sand and alabaster contained identical amounts 
of these components. 

Fig. 1 
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Shown in Fig. la-c are the penetration profiles in the sand-alabaster, the foamy concrete, 
and the soil targets, respectively. In all cases the charge was placed under the upper free 
surface. Analyzing these profiles, we note that the penetration width varies substantially 
according to the height of the target: at first it narrows and then it widens; moreover, 
in the sand-alabaster and soil targets cusps are clearly discernible. In the course of our 
experiments it became clear that the upper part of the penetration arises from the ejection 
of material upwards, while the lower part arises from material being driven downward; more- 
over, no spall is observed in the case of targets of relatively small thickness (soil tar- 
gets up to 0.12 m). 

However, the penetration form described is evidently typical only for media not possess- 
ing sufficient elastic and plastic properties. Thus, for penetration in the plastic compound 
a large role is played by plastic deformations with the ejection of material being insignifi- 
cant. 

We now consider the penetration of a target by means of a single line charge within the 
framework of the hydrodynamic models. 

2. Statement and Solution of a Problem Using the SFM Model. Let us assume that with 
the explosion of an infinitely long line charge, submerged to a depth of one diameter in a 
target of thickness H, the penetration cross section ABCDND'C'B' is formed (Fig. 2a, in which 
the plane z = x + iy is perpendicular to the charge axis, and BCD is a part of the flow curve, 
which starts out from the charge and divides at the point C). It is well known [9] that a 
circular charge of radius r (r << H), buried to a depth of one diameter, can be modeled as 
a dipole, whose moment M may be calculated from the formula M = 4~0r/p, where H 0 is the pres- 
sure impulse on the charge. Let the dipole be located at the point A. 

We need to find the form and the dimensions of the penetration, i.e., the curve 
ABCDND'C'B'. In view of the symmetry with respect to the y axis, we need to consider only 
the right half of the physical domain, which we denote by Gz. 

We introduce the dimensionless variables 

~* = ~V;TM,  w* = ~IV-~,o ,  ~* =a~o. ( 2 . 1 )  

Solution of the problem depends on the single parameter H*. In what follows we shall omit 
the asterisk, indicating dimensionless variables. We solve the problem by the conformal map- 
ping method employed in the theory of jets. 

We introduce the hodograph function of the velocity X(Z) = 8 + iS = i in (dw/dz), where 
8 is the angle between the velocity vector and the x axis, and S = inv. 

For the functions w(z) and X(Z) we have, on separate portions of the boundary of Gz, the 
boundary conditions 

,p = O, O = g / 2  o n  AB; ~p = q~x, S = 0 o n  BCD; 
q)= O, O =  --~/2 o n N D ; ~ =  O, O =  --~12 omNA 
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(~l is a constant, so far not defined). By virtue of the latter conditions, the domain Gz 
will correspond in the w and X planes to the domains Gw and G X (Fig. 2b, c). We now map the 
half plane G~ = {~: Im~ > 0}, ~ = $ + iN (Fig. 2d) conformally onto the domains Gw and 
by means of the functions 

w (~) X O;--d)/R(%q)d% % ( ~ ) = a r c s i n ~ ,  
q 

where X is a parameter, so far unknown; R(T, q) = s 2 -- i)(~ -- q)i where for the root in 
question we take that branch which is positive for �9 > i. Calculating w'(~) and using the 
expression for X(Z), we obtain 

= % ~ (z - -  d) exp (i a rcs in  "r) d'r ($) z J R (~, q) 
q 

( 2 . 2 )  

The expression for z( 0 depends on the three parameters (X, d, q). From the condition 
Rew(1) = 0, which can be written in the form 

1 

y (.c -- d)/ I R ('r, q) I d'r = O, 
--1 

we derive 

d : d ( q )  = - 1  ! n  ('r' q) 1/31 I B (~' q)l " 

We calculate the parameter X in the following way. It is known that if a dipole is present 
at the point z0, then iM= 2~ tim [(z--z0) w(z)]. Using l'Hospital's Rule and noting that the 

z ~ Z  0 

point A of the domain Gz corresponds to ~ = ~, we have 

t = 2 n i  limz'w2/w'=2nX21im(~--~o ~o~ ~f~-l--i)(! ('v--d) dT)  2 . R ( %  q) 

Evaluating the indeterminacy, we find 4~X 2 = I, whence X = V~/4~. With the aid of the equation 
Imz(1) = H, we determine q and, substituting its value into Eq. (2.2), we obtain, as ~ § $ , 
the equation of the free boundary. 

3. Solution of the Problem Using the FM. In this case, in accordance with the FM model, 
the domain Gz has the form of an infinite half-strip (Fig. 3, considering only the right half 
of the physical plane). Since �9 = 0 on AC and NC, @ = 0 on AN, then, in the w plane, to the 
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domain Gz there corresponds the fourth quadrant, which is the domain Gw. The location of the 
point C in the w plane is determined in the process of obtaining the solution. 

We introduce the dimensionless variables (2.1). Then, as was the case with the SFM, 
the solution of the problem depends on a single parameter, the thickness H. Mapping Gz onto 
Gw, and noting that at the point z = 0 there is a dipole with unit moment, we have w(s) = 
i[cth (~z/2H)]/4H. Differentiating w(z) and equating the modulus of the resulting expression 
to one for y = 0 and y = -H, we write formulas for determining the penetration halfwidth, 
from above L I = 2H arsh (/~78/H)/~ and from below L 2 = 2H arch (/-~-/8/H)/~. 

4. Comparison of the Theoretical Results with Experimental Data. First of all, the 
form of the penetration obtained using the SFM agrees qualitatively in many ways with the 
form of the penetration obtained experimentally (Fig. 4, penetrations obtained with the SFM 
for H = i, M = 1.75, 3, 7, ii; results shown in curves 1-4, respectively). In addition, the 
mechanism for the formation of the penetration is the same: a portion of the penetration 
is formed at the expense of material ejected upward and a portion resulting from material 
driven downward. 

We observe, first of all, the good qualitative agreement. Figure 5 represents the rela- 
tionship LI/H = f(L2/H). Curve i corresponds to the FM; curve 2 corresponds to the SFM; the 
experimental data +, �9 correspond to soil and plastic targets, respectively. 

The relationship LI/H = f(L2/H) , shown graphically in Fig. 5, is identical for the FM 
and the SFM beginning with L2/H m 0.4. What this says is that if one is required to deter- 
mine only L l and L 2 and not the whole penetration boundary, it is then sufficient to use the 
simpler FM model. 

We note, on the basis of these results, that the FM and the SFM agree with one another 
and with the experimental data sufficiently well, so that with suitable parametrization we 
have both qualitative and quantitative agreement. 

The author wishes to thank E. N. Sher and A. V. Potashev for their help in carrying out 
the experiments. 
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